MP03-02 DEREGULATED MTOR IS RESPONSIBLE FOR AUTOPHAGY DEFECT EXACERBATING KIDNEY STONE DEVELOPMENT
نویسندگان
چکیده
منابع مشابه
Targeting the deregulated spliceosome core machinery in cancer cells triggers mTOR blockade and autophagy.
The spliceosome is a large ribonucleoprotein complex that guides pre-mRNA splicing in eukaryotic cells. Here, we determine whether the spliceosome could constitute an attractive therapeutic target in cancer. Analysis of gene expression arrays from lung, breast, and ovarian cancers datasets revealed that several genes encoding components of the core spliceosome composed of a heteroheptameric Sm ...
متن کاملLipopolysaccharide (LPS)-Induced Autophagy Is Responsible for Enhanced Osteoclastogenesis
We hypothesized that inflammation affects number and activity of osteoclasts (OCs) via enhancing autophagy. Lipopolysaccharide (LPS) induced autophagy, osteoclastogenesis, and cytoplasmic reactive oxygen species (ROS) in bone marrow-derived macrophages that were pre-stimulated with receptor activator of nuclear factor-κB ligand. An autophagy inhibitor, 3-methyladenine (3-MA) decreased LPS-induc...
متن کاملHypoxia, MTOR and autophagy
Although hypoxia can cause cell cycle arrest, it may simultaneously suppress a conversion from this arrest to senescence. Furthermore, hypoxia can suppress senescence caused by diverse stimuli, maintaining reversible quiescence instead. Hypoxia activates autophagy and inhibits MTOR, thus also activating autophagy. What is the relationship between autophagy and cellular senescence? Also, can inh...
متن کاملmTOR regulation of autophagy.
Nutrient starvation induces autophagy in eukaryotic cells through inhibition of TOR (target of rapamycin), an evolutionarily-conserved protein kinase. TOR, as a central regulator of cell growth, plays a key role at the interface of the pathways that coordinately regulate the balance between cell growth and autophagy in response to nutritional status, growth factor and stress signals. Although T...
متن کاملmTOR, autophagy, and reprogramming
Nuclear reprogramming to achieve induced-pluripotency by the Yamanaka factors (Takahashi and Yamanaka, 2006) is largely viewed as a consequence of a cascade of expression profile changes, along with alterations in epigenetic markings, which are primarily nuclear events. Cytoplasmic processes that could be critical for this process have not been emphasized. However, Fan and colleagues now showed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Urology
سال: 2019
ISSN: 0022-5347,1527-3792
DOI: 10.1097/01.ju.0000554934.88334.11